手机浏览器扫描二维码访问
(感谢家里的哈士奇叫狮子的两个万赏!)
…………
第一题,完完全全的送分题。
这道题目,对于那些竞赛弱国的队员们,或许还存在一定的难度。
但于前几排的学生们来说,他们全都是来自各大竞赛强国的队员,做起来自然毫无压力。
区别的,无非是完成的速度而已。
耗费越少的时间完成第一题,那就可以拿越多的时间,来钻研后面的两题。
第一题:【找出所有的正整数对m,n≥3,使得存在无穷多个正整数a,使(a^m+a-1)(a^n+a^2-1)为整数。】
毕齐同学摸着下巴,沉吟几秒钟后,脑海中便有了思路。
握着笔,笔尖一边唰唰唰的在草稿纸上列着公式,一边嘴中小声嘀咕着一长串普通人完全听不懂的东西。
“首先,可以确定的一点是m≥n,那么接下来,需要构造两个函数。”
“f(x)=(x^m+x-1),g(x)=(x^n+x^2-1),设f(x)=r(x)g(x)+s(x),r(x)和s(x)应该都属于整系数多项式。”
“然后,给它来一个裴蜀定理,得出r(x)和s(x)存在的最大公因数。”
“……这里,直接来个无穷递降法!把方程的幂降下来。再利用……求出,m=5,n=3,那么便只需要证明对于任意的整数a,(a^5+a-1)(a^3+a^2-1)都是整数!”
十分钟的时间,毕齐完成第一步的转化。
即确定题干中m、n的值,将问题转化为一个只有普通高考难度的不等式证明题。
“有些不可思议的轻松啊!”
考试时间二十分钟,毕齐看着草稿纸上已经被自己证明出来的第一题,轻松的笑了笑。
IMO的题目,并没有他想象的那么恐怖嘛!
这样思索着,毕齐的视线落在第二道代数题。
虽然已经知道Lagrange乘数法,就是这道题目破题的关键。
但具体的推导过程,还是需要毕齐细细的思考梳理。
…………
休息室内。
会场中每位考生的一举一动都被各国领队们尽收眼底。
目前大部分考生都还在做第一题。
所以除了个别考生以外,大部分考生脸上的神色都还算正常,并没有出现那种苦仇大恨的表情。
显然进展还算比较顺利。
这让不少教练齐齐松口气。
幸好没有出现,他们的队员,在第一题就被卡住的天崩画面。
电影首映式上,记者看到夏思雨脖子后痕迹这是什么?夏思雨不在意的撩了撩耳畔长发蚊子咬的。回家后,薄言把她按在墙边,声音戏谑而危险蚊子?要再给...
[最野的玫瑰,躁动无人区]初见,温弦一眼就看中了陆大队长。垂涎欲滴。温弦嗯?怎么才能泡到你?是麻袋还是甜言蜜语。陆枭叼着烟,冷漠道你是风光大明星,我是这鸟不拉屎无人区的队长,穷得很,你看中我什么?温弦我喜欢看你是怎么顶撞我的。陆枭一哽。燥了脸,无情走人不知羞耻,想都别想!隔天。他心血来...
我抽烟,喝酒,吸薄荷,杀人,泡妞,爱做饭,但我知道我是一只好猫。我,大橘王,打钱!新书魔尊练习生已发布。...
末日荒土,世宗三年,天下大乱,民不聊生。中央皇朝崩坏,各地群雄割据,门派独立。魔门妖党隐于暗处作乱,帮派相互征伐,混乱不堪。天灾连连,大旱,酷寒,暴雨,虫灾,人民苦苦挣扎,渴求希望与救赎。大乱之中,各...
食肉者勇,食谷者智,食气者寿,不食者不死,食香者何如焉?自古以来,凡民燔柴烧香,祭祀祈祷,莫不以香为引,李柃善制香,本为凡世手艺,万万没想到,竟因天赋异禀食香炼魂,凭此开创一方道途,成就香祖。交流群42355392...
记者采访富豪榜首谢闵行,谢总,请问你老婆是你什么?谢闵行心尖儿宝贝。记者不满足,又问可以说的详细一点么?谢闵行心尖子命肝子,宝贝疙瘩小妮子。这够详细了吧?记者们被塞狗粮,欲哭无泪,准备去采访某小妮子,谢少夫人,请问你丈夫是你什么?...