例如他曾经在国科大的讲座上说过这么一句话:
“有85%的数学和物理知识没有传入华夏,这些知识都被外国人紧紧捂着。”
这句话其实是有些唬人的,有点刻意为人设而口出狂言的味道。
谁都知道国外必然有一些知识没有与咱们共享,但那些内容主要涵盖于前端领域,并且决然没有85%这么离谱。
于是呢。
当时被和他一起说出口、用于佐证以上观点的另一句话,在网上便也成了笑谈:
“你们不知道吧,三角形有44072个心。”
但实际上这句话是正确的,并且是一个非常正式的数学研究方向。
只不过它是隶属于初等平面几何的结论,平几早就不再是前端数学的研究方向了,对于大多数人来说基本上用不到。
所以这个知识不是没传入国内,而是教了也没啥意义——哪怕是国外顶尖大学的顶尖竞赛班,也不会对这些三角心进行研究。
一般来说。
普通人只需要掌握五心,学几何的顶多顶多掌握50种就到顶了。
再往后差不多属于纯理论的范畴,极其冷门且偏僻。
因此曹教授拿这个例子去佐证“有85%的数学和物理知识没有传入华夏”的做法并不正确,不过本身这个数字没啥问题。
不是反智,更不是民科,因为三角心的判定是三线共点,由此锁定的心实在是太多太多了。
目前有个网站将这些心都收录在了一起,网址为faculty.evansville.educk6encyclopediaETCPart4。(这位毕竟是蜗壳的教授,口嗨的内容躺平任嘲,不过这个数据倒确实是无误的)
OK,话题再回归原处。
斐波那契数列在生活和数学上的应用极广,而其中的完全平方项有哪些,也一直是个很有矛盾色彩的问题。
所谓完全平方数。
指的是一个数能表示成某个整数的平方的形式。
比如说4=2^2,9=3^3,256=4^4等等......
为啥说斐波那契数列中的完全平方项是个很矛盾的问题呢?
原因很简单。
这个问题直到徐云穿越的五十多年前,也就是1964年的时候才被英国的数学家J.H.E.Cohn计算出来。
从时间节点上来说,无疑属于近代才被破解的一道难题。
但与此同时。
它的破解过程运用的都是初等数论内容,和素数定理与四色定理一个性质。
这也是极少数能够用初等数论解决的数学难题之一,理论上在1800年其实就可以破解出来了。
当然了。
以前那个极少数的例子不包括哥猜——运气好的话,每年你都能看到上千条哥德巴赫猜想的初等证明从国内外的民科手中诞生.......
不过就像物理学可以分成经典物理和更微观的量子物理一样。
J.H.E.Cohn...也就是科恩证明出来的完全平方项只是某个范围内的答案,比较公认的是前二十万个斐波那契数这个范围。
如果将范围无限扩大,那么还是可以再找到几个完全平方项的。
比如说第四个数是884358447525575649,大概在1056412078的位置。
再往后还有6.1613e+030,9.9692e+030等等......
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
相邻推荐:夫人每天都在线打脸 我家灵兽有点怪 我在荒岛创造一个文明 偏执大佬们为我作天作地 我是一株仙灵脾 重生之程咬金传奇 型月龙王 从萌娃童星开始 天命嫡妻 我的狼妖公子 美人请自重 漓梦之殇 我在昆仑闭关三百年 网游七天之叶无忧 网游三国之征服记 轩辕战记 盗天引 机智萌妃嫁给傻王后 异界争霸之最强召唤 第五个季节悄悄来