三藏中文网

手机浏览器扫描二维码访问

对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑。

那么作者君在此列出相关参考文献中的一篇开源论文。

以下是文章内容:

Long-termintegrationsandstabilityofplanetaryorbitsinourSolarsystem

Abstract

Wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets。Aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span。Acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofMercury。ThebehaviouroftheeccentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskarssecularperturbationtheory(e。g。emax~0。35over~±4Gyr)。However,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations。Wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5×1010yr。TheresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span。

1Introduction

1。1Definitionoftheproblem

ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofNewton。Theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory。However,wedonotyethaveadefiniteanswertothequestionofwhetherourSolarsystemisstableornot。Thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotionintheSolarsystem。Actuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsystem。

Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,butofinstability。Wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&Boss1996;Ito&Tanikawa1999)。AsystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerHillradius。Otherwisethesystemisdefinedasbeingstable。HenceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±5Gyr。Incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace。Thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(Yoshinaga,Kokubo&Makino1999)。OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosystem。

1。2Previousstudiesandaimsofthisresearch

Inadditiontothevaguenessoftheconceptofstability,theplanetsinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992)。Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&Holman1999;Lecar,Franklin&Holman2001)。However,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions。

Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(Sussman&Wisdom1988;Kinoshita&Nakai1996)。Thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod。Atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(1998)。Althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets。TheinitialorbitalelementsandmassesofplanetsarethesameasthoseofourSolarsysteminDuncan&Lissauerspaper,buttheydecreasethemassoftheSungraduallyintheirnumericalexperiments。Thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper。Consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseoftheSun。WhenthemassoftheSunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger。Duncan&Lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(VenustoNeptune),whichcoveraspanof~109yr。Theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations。

Ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar1988),Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996)。TheresultsofLaskarssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations。

Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5×1010yr。Thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedPCsandworkstations。Oneofthefundamentalconclusionsofourlong-termintegrationsisthatSolarsystemplanetarymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±4Gyr。Actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic。Sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofSolarsystemplanetarymotion。Forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations。

InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations。Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations。Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements。Aroughestimationofnumericalerrorsisalsogiven。Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit。InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr。InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause。

2Descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2。3Numericalmethod

Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&Holman1991;Kinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994)。

Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(Mercury)。Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7。2d)andSaha&Tremaine(1994,22532d)。Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses。Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110。83oftheorbitalperiodofJupiter。Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize。However,sincetheeccentricityofJupiter(~0。05)ismuchsmallerthanthatofMercury(~0。2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes。

Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d。

WeadoptGaussfandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations。ThenumberofmaximumiterationswesetinHalleysmethodis15,buttheyneverreachedthemaximuminanyofourintegrations。

Theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(F±)。

Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations。SeeSection4。1formoredetail。

2。4Errorestimation

2。4。1Relativeerrorsintotalenergyandangularmomentum

Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors。Theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig。1)。Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore。

RelativenumericalerrorofthetotalangularmomentumδAA0andthetotalenergyδEE0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues。ThehorizontalunitisGyr。

Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms。IntheupperpanelofFig。1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision。

2。4。2Errorinplanetarylongitudes

SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i。e。theerrorinplanetarylongitudes。Toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures。Wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations。Forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0。125d(164ofthemainintegrations)spanning3×105yr,startingwiththesameinitialconditionsasintheN?1integration。Weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution。Next,wecomparethetestintegrationwiththemainintegration,N?1。Fortheperiodof3×105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof~0。52°(inthecaseoftheN?1integration)。Thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofEarthafter5Gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap。Similarly,thelongitudeerrorofPlutocanbeestimatedas~12°。ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas~60°。

3Numericalresults–I。Glanceattherawdata

Inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata。Theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace。

3。1Generaldescriptionofthestabilityofplanetaryorbits

First,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits。Ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets。AswecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralGyr。Thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d)。Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent。

Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±1。Theaxesunitsareau。Thexy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum。(a)TheinitialpartofN+1(t=0to0。0547×109yr)。(b)ThefinalpartofN+1(t=4。9339×108to4。9886×109yr)。(c)TheinitialpartofN?1(t=0to?0。0547×109yr)。(d)ThefinalpartofN?1(t=?3。9180×109to?3。9727×109yr)。Ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5。47×107yr。Solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromDE245)。

热门小说推荐
离魂随影

离魂随影

离魂随影百度云txt下载舍友是个同性恋,想要我做她女朋友。我拒绝之后,被传言说是个坐台女,我想要找她理论,可是深夜却被侵犯。最后我发现侵犯我的,不是人...

另类保镖:美女总裁爱上我

另类保镖:美女总裁爱上我

叶凌天,神秘部队退伍军人,为了给妹妹凑集五十万的治疗费用不得不给三元集团的千金小姐李雨欣当贴身保镖。且看经历过太多生死的铮铮硬汉叶凌天如何在这个繁华都市里走出属于自己的一条不平凡的路来。...

鲜妻好甜蜜:老公,别太坏

鲜妻好甜蜜:老公,别太坏

赫敬尧,你快哦,快一点?遵命!男人沙哑的回应,她不得不把放开我三个字咽了回去。婚前,赫敬尧向她保证,嫁给他以后她可以在后,...

吞噬星空之太上问道

吞噬星空之太上问道

吞噬星空世界里,罗峰骄傲地说我夏师兄是最强的!人类史上第一妖孽!雪鹰领主世界里,东伯雪鹰激动地说夏大哥,你是我从小的偶像!我要加入云雾城!这是一个穿越者的故事!夏至带着太上道传承,来到吞噬星空世界,宇宙亿万族群终将要因他而为之震颤!这里有神灵对战,法则感悟!这里有万族争锋,真意对决!太虚洪荒,宇宙万...

官运红途

官运红途

吴一楠无意间看到老婆在自家楼下跟市委秘书激情拥吻,继而得知自己的副科长职位是市委秘书帮的忙,愤而跟老婆离婚,随之被撤职换岗,人生处于低谷之中。现场会上,吴一楠对刘依然产生好感,对她勇敢反抗和揭露领导的淫威所敬佩。在一次下乡途中,市里某位领导认出了吴一楠,自此以后,吴一楠官运亨通...

突然成仙了怎么办

突然成仙了怎么办

(全网十万订作品,已完本,放心看。新书我弟子明明超强却以德服人希望大家关注)这天,林凡与圣女同时穿越,之后更是发现,他们可以无限互穿。随后,两人在不同时空,杠上了。直到某日,林凡穿越归来,却发现自己已经成仙!突然成仙了怎么办?在线等,挺急的。(群号1005499845,静待朋友们加入)...