手机浏览器扫描二维码访问
当然,尽管是确定了阅读顺序,林枫也没有马上开始。
任何星辰大海那都是遥远的梦想,想要追求遥远的梦想这没什么。
但前提是要在此之前不需要为物质而烦恼。
想想那令人压抑的信用卡账单,林枫就一个头两大。
林枫现在还得为物质奔波。
「去码头整点薯条。jpg」
林枫记得当时加州大学洛杉矶分校高性能计算实验室可是在第一时间表示他们已经安排超算集群开始验证2^-1和2^-1是否是梅森素数了。
怎么这么久还没出结果呢?
虽然说漫无目的地去寻找梅森素数挺困难的。
但要通过超级计算机验证一个数是不是梅森素数还真不费劲。
一般来说,要验证2^-1是否是素数。
直接计算出这个数并检查它是否有其他因数是最容易想到的思路。
但这明显不可行。
像是2^-1这种超大数的位数太多,如果暴力因式分解挨个试肯定无法在合理的时间内完成。
不过也不是毫无办法。
卢卡斯-莱默测试可以有效简化这个过程。
在借助这个方法的情况下完全通过递归迭代序列验证是否满足特定条件。
具体步骤也不复杂。
此前在写论文的时候林枫还特别了解过这方面。
先是初始化设S_0=4,而后递归:计算S_(n+1)=S_(n^2-2)
模2^p-1,运算从n=1开始,直到n=p-2为止。
如果最终结果S_(p-2)是0,那么2^p-1就是一个素数;否则它不是素数。
听起来依旧是有点麻烦的。
但对于超级计算机来说这完全是小儿科好不好。
而且由于卢卡斯-莱默测试的复杂度是线性时间复杂度,即O(p),这意味着计算的时间与p成正比。
对于2^-1来说,只需要执行次循环,每次计算一个模运算。
卢卡斯-莱默测试每次迭代中包含的运算量比较复杂,涉及到大整数的平方和模运算。
不过估算的话也不是没办法。
可以粗略假设每次迭代进行模运算需要进行约10^6次计算。
这样计算的话,总的计算次数是:
*10^6约等于7。42*10^13次计算。
如果计算机每秒可以执行10^15次计算。
草根从一个临时工做起,在与各类对手的对抗中一步步的发展起来。赚钱泡妞对抗阴谋在书中尽现。读者群...
快穿1v1甜宠自从神魔大战以后,天宫上的人都知道小仙女阿司养了一条小黑龙。那条小黑龙可娇气了,不仅吃饭要喂,就连睡觉也要抱着。直到,小黑龙长成了大黑龙。他把阿司推下了轮回台,自己也跟着跳了下去。阿司,你不要我了吗?阿司,你抱抱我后来的后来,阿司轮回归来。魔尊上渊马不停蹄的杀上了天宫。阿司你出来,我...
当楚岚走出考场那一刻,系统加身!叮,签到成功,奖励法拉利恩佐一辆!于是,楚岚一路向北,在魔都里留下都市车神的传说!叮,签到成功,奖励沙漠之鹰一把!于是,面对武林高手,我起了一枪秒了有什么好说的!叮,签到成功,奖励技能天气之子!于是,现在开始就要放晴了哦!那么问题来了,考试结果还重要吗?...
盛传厉氏的总裁高富帅占了两样,缺的那一‘帅’是因为他太丑,不敢示人。没想到身边多了一个女人后,厉总裁的喜好彻底变了,每天都要牵着小女人的手逛逛街,看看电影,必要时伸手掐断小女人身后的一朵朵的桃花,乐此而不彼。那时人们才知道,厉总一点也不丑,那个小女人是上辈子修来的福气捡了个宝。...
金麟岂是池中物,一遇风云便化龙!重回少年时代的于浩然,不仅保留着前世的一切记忆,而且还获得了无所不知,无所不晓,拥有时间加速的域塔。且看他抢机缘,夺造化,灭仇敌搅风云!这是一个升级装逼打怪的故事...
本书简介亲,你看小说时,曾经为里面的某个阴险狠毒却可怜可悲的女人而遗憾吗?你看电视时,曾经为某个痴情无悔却最终独身的女人而心疼吗?如果有,那么请你不要走开,本文中,作者为这些痴情女子在二十一世纪精挑细选了多位精英男士,保证让这些痴情女子脱离曾经的苦恋,有个幸福美满的结局。本文不虐人(可能吧),不黑人(看我喜不喜欢),喜欢此类型的快到我的碗里来吧。不要客气的收藏一下吧O∩∩O。亲爱的们,刚刚编编下达通知,说周日入V入望大家能一如既往的支持我,谢谢!O∩∩O伯研的文。...