手机浏览器扫描二维码访问
ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+1isshowninFig。4。Asexpected,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,EarthandMars。TheelementsofMercury,especiallyitseccentricity,seemtochangetoasignificantextent。Thisispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalevolutionthanotherplanets;theinnermostplanetmaybenearesttoinstability。ThisresultappearstobeinsomeagreementwithLaskars(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-scaleofseveral109yr。However,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobalstabilityofthewholeplanetarysystemowingtothesmallmassofMercury。Wewillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements。
Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5)。
3。2Time–frequencymaps
Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-spans。Evensuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(cf。Berger1988)。
Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–frequencymaps。Thespecificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskars(1990,1993)frequencyanalysis。
Dividethelow-passfilteredorbitaldataintomanyfragmentsofthesamelength。Thelengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT。
Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδT?T。WecontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength。
WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams。
Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart。
Weperformthereplacement,andconnectallthegrey-scale(orcolour)chartsintoonegraphforeachintegration。Thehorizontalaxisofthesenewgraphsshouldbethetime,i。e。thestartingtimesofeachfragmentofdata(ti,wherei=1,…,n)。Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements。
WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedecomposedintofrequencycomponentsisterriblyhuge(severaltensofGbytes)。
Atypicalexampleofthetime–frequencymapcreatedbytheaboveproceduresisshowninagrey-scalediagramasFig。5,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+2integration。InFig。5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicityindicatedbytheordinateisstrongerthaninthelighterareaaroundit。WecanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+2integration。Thisnearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement。
4。2Long-termexchangeoforbitalenergyandangularmomentum
Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,H。GandHareequivalenttotheplanetaryorbitalangularmomentumanditsverticalcomponentperunitmass。LisrelatedtotheplanetaryorbitalenergyEperunitmassasE=?μ22L2。Ifthesystemiscompletelylinear,theorbitalenergyandtheangularmomentumineachfrequencybinmustbeconstant。Non-linearityintheplanetarysystemcancauseanexchangeofenergyandangularmomentuminthefrequencydomain。Theamplitudeofthelowest-frequencyoscillationshouldincreaseifthesystemisunstableandbreaksdowngradually。However,suchasymptomofinstabilityisnotprominentinourlong-termintegrations。
InFig。7,thetotalorbitalenergyandangularmomentumofthefourinnerplanetsandallnineplanetsareshownforintegrationN+2。Theupperthreepanelsshowthelong-periodicvariationoftotalenergy(denotedasE-E0),totalangularmomentum(G-G0),andtheverticalcomponent(H-H0)oftheinnerfourplanetscalculatedfromthelow-passfilteredDelaunayelements。E0,G0,H0denotetheinitialvaluesofeachquantity。Theabsolutedifferencefromtheinitialvaluesisplottedinthepanels。ThelowerthreepanelsineachfigureshowE-E0,G-G0andH-H0ofthetotalofnineplanets。Thefluctuationshowninthelowerpanelsisvirtuallyentirelyaresultofthemassivejovianplanets。
Comparingthevariationsofenergyandangularmomentumoftheinnerfourplanetsandallnineplanets,itisapparentthattheamplitudesofthoseoftheinnerplanetsaremuchsmallerthanthoseofallnineplanets:theamplitudesoftheouterfiveplanetsaremuchlargerthanthoseoftheinnerplanets。Thisdoesnotmeanthattheinnerterrestrialplanetarysubsystemismorestablethantheouterone:thisissimplyaresultoftherelativesmallnessofthemassesofthefourterrestrialplanetscomparedwiththoseoftheouterjovianplanets。Anotherthingwenoticeisthattheinnerplanetarysubsystemmaybecomeunstablemorerapidlythantheouteronebecauseofitsshorterorbitaltime-scales。Thiscanbeseeninthepanelsdenotedasinner4inFig。7wherethelonger-periodicandirregularoscillationsaremoreapparentthaninthepanelsdenotedastotal9。Actually,thefluctuationsintheinner4panelsaretoalargeextentasaresultoftheorbitalvariationoftheMercury。However,wecannotneglectthecontributionfromotherterrestrialplanets,aswewillseeinsubsequentsections。
4。4Long-termcouplingofseveralneighbouringplanetpairs
Letusseesomeindividualvariationsofplanetaryorbitalenergyandangularmomentumexpressedbythelow-passfilteredDelaunayelements。Figs10and11showlong-termevolutionoftheorbitalenergyofeachplanetandtheangularmomentuminN+1andN?2integrations。Wenoticethatsomeplanetsformapparentpairsintermsoforbitalenergyandangularmomentumexchange。Inparticular,VenusandEarthmakeatypicalpair。Inthefigures,theyshownegativecorrelationsinexchangeofenergyandpositivecorrelationsinexchangeofangularmomentum。Thenegativecorrelationinexchangeoforbitalenergymeansthatthetwoplanetsformacloseddynamicalsystemintermsoftheorbitalenergy。Thepositivecorrelationinexchangeofangularmomentummeansthatthetwoplanetsaresimultaneouslyundercertainlong-termperturbations。CandidatesforperturbersareJupiterandSaturn。AlsoinFig。11,wecanseethatMarsshowsapositivecorrelationintheangularmomentumvariationtotheVenus–Earthsystem。MercuryexhibitscertainnegativecorrelationsintheangularmomentumversustheVenus–Earthsystem,whichseemstobeareactioncausedbytheconservationofangularmomentumintheterrestrialplanetarysubsystem。
ItisnotclearatthemomentwhytheVenus–Earthpairexhibitsanegativecorrelationinenergyexchangeandapositivecorrelationinangularmomentumexchange。Wemaypossiblyexplainthisthroughobservingthegeneralfactthattherearenoseculartermsinplanetarysemimajoraxesuptosecond-orderperturbationtheories(cf。Brouwer&Clemence1961;Boccaletti&Pucacco1998)。Thismeansthattheplanetaryorbitalenergy(whichisdirectlyrelatedtothesemimajoraxisa)mightbemuchlessaffectedbyperturbingplanetsthanistheangularmomentumexchange(whichrelatestoe)。Hence,theeccentricitiesofVenusandEarthcanbedisturbedeasilybyJupiterandSaturn,whichresultsinapositivecorrelationintheangularmomentumexchange。Ontheotherhand,thesemimajoraxesofVenusandEartharelesslikelytobedisturbedbythejovianplanets。ThustheenergyexchangemaybelimitedonlywithintheVenus–Earthpair,whichresultsinanegativecorrelationintheexchangeoforbitalenergyinthepair。
Asfortheouterjovianplanetarysubsystem,Jupiter–SaturnandUranus–Neptuneseemtomakedynamicalpairs。However,thestrengthoftheircouplingisnotasstrongcomparedwiththatoftheVenus–Earthpair。
5±5×1010-yrintegrationsofouterplanetaryorbits
Sincethejovianplanetarymassesaremuchlargerthantheterrestrialplanetarymasses,wetreatthejovianplanetarysystemasanindependentplanetarysystemintermsofthestudyofitsdynamicalstability。Hence,weaddedacoupleoftrialintegrationsthatspan±5×1010yr,includingonlytheouterfiveplanets(thefourjovianplanetsplusPluto)。Theresultsexhibittherigorousstabilityoftheouterplanetarysystemoverthislongtime-span。Orbitalconfigurations(Fig。12),andvariationofeccentricitiesandinclinations(Fig。13)showthisverylong-termstabilityoftheouterfiveplanetsinboththetimeandthefrequencydomains。Althoughwedonotshowmapshere,thetypicalfrequencyoftheorbitaloscillationofPlutoandtheotherouterplanetsisalmostconstantduringtheseverylong-termintegrationperiods,whichisdemonstratedinthetime–frequencymapsonourwebpage。
Inthesetwointegrations,therelativenumericalerrorinthetotalenergywas~10?6andthatofthetotalangularmomentumwas~10?10。
5。1ResonancesintheNeptune–Plutosystem
Kinoshita&Nakai(1996)integratedtheouterfiveplanetaryorbitsover±5。5×109yr。TheyfoundthatfourmajorresonancesbetweenNeptuneandPlutoaremaintainedduringthewholeintegrationperiod,andthattheresonancesmaybethemaincausesofthestabilityoftheorbitofPluto。Themajorfourresonancesfoundinpreviousresearchareasfollows。Inthefollowingdescription,λdenotesthemeanlongitude,Ωisthelongitudeoftheascendingnodeand?isthelongitudeofperihelion。SubscriptsPandNdenotePlutoandNeptune。
MeanmotionresonancebetweenNeptuneandPluto(3:2)。Thecriticalargumentθ1=3λP?2λN??Plibratesaround180°withanamplitudeofabout80°andalibrationperiodofabout2×104yr。
TheargumentofperihelionofPlutoωP=θ2=?P?ΩPlibratesaround90°withaperiodofabout3。8×106yr。ThedominantperiodicvariationsoftheeccentricityandinclinationofPlutoaresynchronizedwiththelibrationofitsargumentofperihelion。ThisisanticipatedinthesecularperturbationtheoryconstructedbyKozai(1962)。
ThelongitudeofthenodeofPlutoreferredtothelongitudeofthenodeofNeptune,θ3=ΩP?ΩN,circulatesandtheperiodofthiscirculationisequaltotheperiodofθ2libration。Whenθ3becomeszero,i。e。thelongitudesofascendingnodesofNeptuneandPlutooverlap,theinclinationofPlutobecomesmaximum,theeccentricitybecomesminimumandtheargumentofperihelionbecomes90°。Whenθ3becomes180°,theinclinationofPlutobecomesminimum,theeccentricitybecomesmaximumandtheargumentofperihelionbecomes90°again。Williams&Benson(1971)anticipatedthistypeofresonance,laterconfirmedbyMilani,Nobili&Carpino(1989)。
Anargumentθ4=?P??N+3(ΩP?ΩN)libratesaround180°withalongperiod,~5。7×108yr。
Inournumericalintegrations,theresonances(i)–(iii)arewellmaintained,andvariationofthecriticalargumentsθ1,θ2,θ3remainsimilarduringthewholeintegrationperiod(Figs14–16)。However,thefourthresonance(iv)appearstobedifferent:thecriticalargumentθ4alternateslibrationandcirculationovera1010-yrtime-scale(Fig。17)。ThisisaninterestingfactthatKinoshita&Nakais(1995,1996)shorterintegrationswerenotabletodisclose。
6Discussion
Whatkindofdynamicalmechanismmaintainsthislong-termstabilityoftheplanetarysystem?Wecanimmediatelythinkoftwomajorfeaturesthatmayberesponsibleforthelong-termstability。First,thereseemtobenosignificantlower-orderresonances(meanmotionandsecular)betweenanypairamongthenineplanets。JupiterandSaturnareclosetoa5:2meanmotionresonance(thefamous‘greatinequality’),butnotjustintheresonancezone。Higher-orderresonancesmaycausethechaoticnatureoftheplanetarydynamicalmotion,buttheyarenotsostrongastodestroythestableplanetarymotionwithinthelifetimeoftherealSolarsystem。Thesecondfeature,whichwethinkismoreimportantforthelong-termstabilityofourplanetarysystem,isthedifferenceindynamicaldistancebetweenterrestrialandjovianplanetarysubsystems(Ito&Tanikawa1999,2001)。WhenwemeasureplanetaryseparationsbythemutualHillradii(R_),separationsamongterrestrialplanetsaregreaterthan26RH,whereasthoseamongjovianplanetsarelessthan14RH。Thisdifferenceisdirectlyrelatedtothedifferencebetweendynamicalfeaturesofterrestrialandjovianplanets。Terrestrialplanetshavesmallermasses,shorterorbitalperiodsandwiderdynamicalseparation。Theyarestronglyperturbedbyjovianplanetsthathavelargermasses,longerorbitalperiodsandnarrowerdynamicalseparation。Jovianplanetsarenotperturbedbyanyothermassivebodies。
Thepresentterrestrialplanetarysystemisstillbeingdisturbedbythemassivejovianplanets。However,thewideseparationandmutualinteractionamongtheterrestrialplanetsrendersthedisturbanceineffective;thedegreeofdisturbancebyjovianplanetsisO(eJ)(orderofmagnitudeoftheeccentricityofJupiter),sincethedisturbancecausedbyjovianplanetsisaforcedoscillationhavinganamplitudeofO(eJ)。Heighteningofeccentricity,forexampleO(eJ)~0。05,isfarfromsufficienttoprovokeinstabilityintheterrestrialplanetshavingsuchawideseparationas26RH。Thusweassumethatthepresentwidedynamicalseparationamongterrestrialplanets(>26RH)isprobablyoneofthemostsignificantconditionsformaintainingthestabilityoftheplanetarysystemovera109-yrtime-span。Ourdetailedanalysisoftherelationshipbetweendynamicaldistancebetweenplanetsandtheinstabilitytime-scaleofSolarsystemplanetarymotionisnowon-going。
AlthoughournumericalintegrationsspanthelifetimeoftheSolarsystem,thenumberofintegrationsisfarfromsufficienttofilltheinitialphasespace。Itisnecessarytoperformmoreandmorenumericalintegrationstoconfirmandexamineindetailthelong-termstabilityofourplanetarydynamics。
——以上文段引自Ito,T。&Tanikawa,K。Long-termintegrationsandstabilityofplanetaryorbitsinourSolarSystem。Mon。Not。R。Astron。Soc。336,483–500(2002)
这只是作者君参考的一篇文章,关于太阳系的稳定性。
还有其他论文,不过也都是英文的,相关课题的中文文献很少,那些论文下载一篇要九美元(《Nature》真是暴利),作者君写这篇文章的时候已经回家,不在检测中心,所以没有数据库的使用权,下不起,就不贴上来了。
重生90之悍妻当家...
简介顾徽作为金针世家传人,无意穿越成了小萝卜头公主,发现自己能看透人心。爹是皇上,娘是心机宠妃,利用超能力,她成为了皇上的小心肝,太子的掌中宝,许多人的...
不要了疼。忍一忍,马上就好了。男人抓住她的手,为她擦药。男朋友敢玩劈腿,她就敢给他戴绿帽子。她倒是要看看,最后谁先玩死谁。只是,三无老公摇身一变竟然成为了A国人人趋之若鹜的新贵,苏简溪接受无能。她的丈夫确实没车没房,但人家有别墅有游轮还有私人飞机啊。都说苏简溪是狐狸精,傍上金主不说,还让人家当了接盘侠。事后还是厉霆骁亲自辟谣是他追的苏简溪,孩子是亲生的!...
离玄武门之变只有三天了,秦琼却打算做个国之纯臣不参与其中,秦琅高呼这不是坑他吗?送上门的从龙之功怎么能不要,等事成之后再功成身退也不迟。 到那时, 做...
既然重生,就得富可敌国!不对,自己得先去找美若天仙的老婆。这时候的她,还没跟前任谈恋爱,得赶紧下手!可不能便宜了那人渣...
高手从来都是寂寞的,可是我却想做一个逍遥高手京城世家子弟楚修为了逃避家族逼婚,远走他乡,哪里想到却因此卷入了更多的桃花之中各色美女与他纠缠不清,就连那霸道的未婚妻也是不远千里追来面对这等桃色劫难,楚修只有一个念头我想回家!各位书友要是觉得校园逍遥高手还不错的话请不要忘记向您...